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We study a model for evolution of complex networks. We introduce information filtering for reduction of the
number of available nodes to a randomly chosen sample, as a stochastic component of evolution. New nodes
are attached to the nodes that have maximal degree in the sample. This is a deterministic component of network
evolution process. This fact is unusual for evolution of scale-free networks and depicts a possible route for
modeling network growth. We present both simulations and theoretical results for network evolution. The
obtained degree distributions exhibit an obvious power-law behavior in the middle with the exponential cut off
in the end. This highlights the essential characteristics of information filtering in the network growth
mechanisms.
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I. INTRODUCTION

Recently, there have been a number of extensive investi-
gations in the field of complex networks. With such an ex-
tensive effort, a number of important theoretical and practi-
cal results have been reported �1–3�. Many real-world
systems can be described as complex networks: the world
wide web �4�, internet routers �5–7�, proteins �8�, and scien-
tific collaborations �9�, among others. The main features that
separate complex networks from “ordinary” networks are the
famous small-world effect �10� and the scale-free degree dis-
tribution �11�.

The first and simplest model for the scale-free distribution
of degrees in a complex network was proposed by Albert and
Barabási �12� �thereafter referred to as the BA model�. This
model is based on a simple principle of preferential attach-
ment. The network grows in such a way that at each time
step t a new node is introduced into the network and attaches
itself to some of older nodes designated by the moment s
when they entered the network. The probability that the node
t will attach itself to a node s is linearly proportional to the
degree ks of the older node Pt→s�ks. Using this simple prin-
ciple, a scale-free network of exponent 3 is easily recon-
structed. Although very appealing because of its simplicity,
the BA model cannot correctly reproduce all characteristics
of real-world networks. First, it produces a temporally corre-
lated network in the sense that older nodes tend to have more
edges than the younger ones. This was not observed in the
real data �13�. Second, it assumes that every new node has
the complete information about the whole network, which is
unrealistic for real network formations �14,15�. Third, in its
original form, it reproduces only networks with degree dis-
tribution characterized by exponent �=3. Nevertheless, the
BA model has triggered a huge number of models that try to
avoid these shortcomings, but are also a natural extension of
the original. Among others, there are models with nonlinear
preferentiality �16�, with rewiring of edges at later times
�17�, with a fitness parameter as an intrinsic value of a node
�18,19�, etc. Novel and more complex approaches, describ-
ing a variety of degree distributions and with more support in
the real data, have been studied recently �20,21�. We believe
that it is also of fundamental importance to examine “as

simple as possible” processes that capture essential behavior
of real world networks.

In this paper, we present a model that exhibits power-law-
like degree distribution of an undirected network or the in-
degree power-law-like distribution of a directed network.
The purpose of the model is to test information filtering as a
stochastic component of the network evolution process,
while using a simple deterministic rule for attachment of new
nodes. The results we report in this paper clearly show that
our model can reproduce power-law distributions with the
cutoff, similar to some real data reported recently �22�.

II. MODEL

Our model introduces two crucial features that make it
different from the Albert-Barabási model. A new node is in-
troduced into the network at each time step. For simulation
purposes, we first generate a network of 1100 nodes that are
completely randomly connected to each other. Each new
node in this core is connected to one of the older ones with
uniform probability, until a core is formed. The size of the
core is taken to be 1100 because we investigated filtration
subsets with maximal size of 1000 nodes. After the core is
formed, the following procedure takes place. Each new node
attaches itself to the network with � links. To choose to
which of the already present nodes in the network it will
attach itself, the following rule is applied. �i� A sample of the
already present nodes of fixed size m is randomly chosen
from the network which contains t nodes. The probability of
choosing any node in the sample equals m / t. �ii� Chosen
nodes are sorted by their degree in decreasing order. For the
nodes with the same degree, no additional rearrangement is
applied. �iii� From such a sorted sample, a new node is at-
tached to the first � nodes with the highest degree. The third
rule is a simple deterministic “winner takes it all” algorithm,
which combined with the first two rules produces very inter-
esting macroscopic effects, as will be presented in this paper.

The nodes are numbered from 0, and the network is
grown to the size nmax. We averaged over multiple simula-
tions �30–100� for every investigated �, m, and nmax in order
to get a statistically relevant ensemble of network realiza-
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tions. We also performed a scaling investigation presented in
Fig. 1 to see how a simulated distribution behaves for differ-
ent network sizes.

To show the stability of the obtained distributions for dif-
ferent parameters, we also give figures of simulated distribu-
tions behavior for different starting core sizes in Fig. 2 and
for different parameters m, i.e., sample sizes, in Fig. 3.

III. THEORY

In the theoretical treatment of the node degree distribution
we decide to limit ourselves to the description of network
with �=1. The reason for such an approach is a cumbersome
analytical study for the case of ��1, which would include
many more summation terms that are analytically almost un-
solvable. We use the master equation approach of Dorogovt-
sev et al. �23�. In this approach, a new node enters the net-
work at every moment s and is therefore denoted by s. It
connects with one edge to the node with maximum degree in

the randomly selected sample of size m. Nodes in sample are
selected from t nodes that are already present in the network,
so that every existing node has the probability m / t of enter-
ing the sample.

The probability that the node s with degree k will enter
the sample of size m at time t and will be connected to the
new node is

v�k,m,t − 1� = �
l=0

m−1 �B̂�k,t − 1�
l

��
N�k,t − 1� − 1

m − l − 1
�

�m − l�� t

m
� . �1�

Here, the first binomial coefficient in the numerator rep-
resents number of possible ways to chose l nodes with de-
gree smaller than k into the sample, and

B̂�k,t − 1� = �
q=1

k−1

N�q,t − 1� , �2�

where N�k , t� is the number of nodes with degree k at time t.
The second binomial coefficient counts the number of pos-
sible ways to chose m−1− l nodes with the same degree as
node s into the sample. This part of expression �1� accounts
for the possibility that in the selected sample there exist other
nodes with the same maximal degree as s. Using the fact that
N�q , t�= P�q , t� · t, together with an approximation that for
large t one can approximate

� t

m
�

with tm /m!, we reduce the expression �1� to the following
form:

v�k,m,t − 1� 	
1

t
�
l=0

m−1 �m

l
���k,t − 1�lP�k,t − 1�m−l−1, �3�

where

FIG. 1. �Color online� Simulated degree cumulative probability
functions with m=100 and �=1 for different final network sizes
nmax are compared to the theoretically obtained one. The figure
clearly depicts the asymptotic approach of simulation curves to the
theoretical result. This implies that analytical results are precise and
that they sufficiently well describe the behavior of the system when
nmax→�. The inset gives the enlarged section with the tails of the
simulated cumulative probability distributions to better illustrate the
effects of the finite network size.

FIG. 2. �Color online� Simulated degree probability distribu-
tions with m=100, �=1 and nmax=106 for different starting core
sizes. The figure distinctly demonstrates the stability of probability
distribution over many decades. The differences that the functions
exhibit in their maximal degrees are the consequence of finite size
�FS� effects.

FIG. 3. �Color online� Simulated degree probability distribu-
tions for different m, but constant �=1, and nmax=106. When m
=1 the network is the exponential one, as can be easily seen from
the straight line in the lin-log plot in the inset. With the increase of
m, the power-law behavior emerges and becomes more pronounced
as m increases.
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��k,t − 1� 
 �
q=1

k−1

P�q,t − 1� . �4�

Using the well-established Dorogovtsev-Mendes master
equation approach for calculating the node-degree distribu-
tion, for k�2 we write

p�k,s,t� = v�k − 1,m,t − 1�p�k − 1,s,t − 1�

+ �1 − v�k,m,t − 1��p�k,s,t − 1� . �5�

To calculate the probability distribution P�k , t� such that a
randomly chosen node has k edges at time t, we average the
probability distribution of all nodes s; i.e.,

P�k,t� =
1

t + 1�
s=0

t

p�k,s,t� . �6�

Thus, we obtain

P�k,t� =
��k − 1,t − 1�

t + 1
P�k − 1,t − 1�

+ � t

t + 1
−

��k,t − 1�
t + 1

�P�k,t − 1� , �7�

where

��k,t − 1� 
 �
l=0

m−1 �m

l
���k,t − 1�lP�k,t − 1�m−l−1. �8�

Assuming that Eq. �7� has a stable asymptotic solution for
t�1, thus changing the time-dependent probability distribu-
tion into time-independent P�k , t�= P�k�, we obtain the fol-
lowing closed form:

P�k� = ��k − 1�P�k − 1� − ��k�P�k� . �9�

Equations �9� are polynomials of order m and hold for all
k�2. Written as polynomials, they adopt the following form:

a�0�P�k�m + a�1�P�k�m−1 + ¯ + a�l�P�k�m−l + ¯

+ �1 + a�m − 1��P�k� − �
l�=0

m−1 �m

l�
���

q=1

k−2

P�q��l�

	P�k − 1�m−l� = 0, �10�

where the coefficients a�l� are

a�l� = �m

l
���

q=1

k−1

P�q��l

. �11�

For theoretical treatment of P�1� as our boundary condi-
tion, the following equation holds:

p�1,s,t� = 
s,t + �1 − 
s,t��1 − v�1,m,t − 1��p�1,s,t − 1� ,

�12�

with an obvious relation for probability that a node with one
edge at time t−1 will adopt a new edge at time t:

v�1,s,t − 1� =
P�1,t − 1�m−1

t
. �13�

Using a procedure similar to that already mentioned
above, we obtain the asymptotic value for P�1�:

P�1� = 1 − P�1�m. �14�

Unfortunately, the set of Eqs. �10� and �14� is analytically
unsolvable and is therefore solved numerically. The solutions
of these polynomial equations show excellent agreement
with numerical simulations as can be seen in Figs. 4, 5, 6,
and 7. These findings further vindicate the master equation
approach followed in this paper.

IV. DISCUSSION

An interesting aspect of the model is its behavior when
the model parameters acquire some limiting values. Let us
first consider the limit m=1. In this case the new node at-
taches completely randomly to one of the existing nodes. The
network obtained by this sort of growth is exponential; i.e.,
its node-degree probability distribution is exponential �2�.
This feature is clearly demonstrated in the inset of Fig. 3.
The opposite limit m→ t would be another interesting limit
of our growth mechanism. Strictly speaking, this growth rule
falls out of scope of this paper, since our model implies fixed
m. However, it is easy to see that this limiting growth rule

FIG. 4. �Color online� Theoretical probability distribution �solid
line� nicely follows simulation data �black diamonds� for m=1000.
Scattering in the tail is a consequence of low probability fluctua-
tions induced by finite size effects. The reader should also note a
big jump of probability for P�k=1�.

FIG. 5. �Color online� For m=10 the theoretical distribution
�solid line� nicely follows simulation data �black dots�. The dis-
agreement in the very tail is explained by finite size effects of
simulated data. However, a FS theoretical distribution obtained by
transformation �16� shows even better agreement with simulation.
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results in a network consisting of one superconnected hub to
which practically all other nodes are connected.

As we have mentioned in the preceding section, a master
equation approach yields a chain of the polynomial Eqs. �10�
and �14�. Note the fact that P�k*� representing the probability
that a randomly chosen node will have a degree k* depends
only on degree probabilities that are equal to or less than k*

�10�. We have calculated the roots of the system to get a
degree probability distribution.

All simulated data and analytical roots of polynomial
equations exhibit a big jump from P�k=1� to P�k=2� of
order of a magnitude or more. The difference P�k=1�− P�k
=2� depends strongly on the size of a chosen sample m. If
the size of the sample is larger, then there is higher probabil-
ity that a node of degree larger than 1 will enter the sample,
and collect the new link. The smaller the sample the greater
the probability that only nodes of degree one will be chosen
in the sample, thus lowering the overall amount of nodes of
degree one. The obtained analytical solutions from Eq. �14�
are in excellent agreement with simulation results regarding
to this jump. The average relative error for m
� �10,100,1000� simulation and theory is 4.3	10−5, and
gets smaller as the sample size m grows larger for nmax
=106.

All simulated data exhibit a strong scattering in the tail.
The scattering is a consequence of low probability fluctua-
tions and makes the comparison between theory and simula-
tion more difficult �Fig. 4�. In order to eliminate these fluc-

tuations in the data and compare theory and simulation, it is
possible to use exponential binning or to transform probabil-
ity distribution into the cumulative probability distribution.
We implemented the second approach and produced a cumu-
lative degree probability distribution Pcum.

Pcum�k� = �
q=k

�

P�q� . �15�

This distribution contains the same system information as
the degree distribution, but is much smoother in the tail. We
compared our theoretical curve with the simulated one and
found an excellent match between theory and simulations.
The results of the comparison between simulation and theory
are presented in Figs. 5, 6, and 7. The relative disagreement
observed in the tails is a consequence of finite size effects
�Fig. 1�. Since our theoretical curve falls relatively slowly, as
can be seen in Table I, the summation of probabilities for k
�kmax in Eq. �15� contributes strongly to the cumulative de-
gree probability in the tail. To get an even better match, we
calculated “renormalized” cumulative probability distribu-
tion

P̃cum�k� =
�q=k

kmax P�q�

1 − �q=kmax+1

�
P�q�

. �16�

This finite size cumulative probability distribution is even
better in describing finite size effects, as shown in the Figs.
5, 6, and 7.

To obtain a description of the degree distribution in the
thermodynamical limit, we fitted theoretical cumulative de-
gree distribution �theoretical and not simulation distribution
was also used since it does not suffer from finite size effects�
with the stretched exponential �17� and power-law distribu-
tion with the exponential cutoff �18� �15�:

Pcum � e−�k�
, �17�

Pcum � k−�e−
k. �18�

For fitting purposes we used all theoretical Pcum�k� values,
except Pcum�1�, because its value is clearly not determined by
the scale-free-like behavior as opposed to all other k values.
Both distributions fit our overall results very well, as pre-
sented in Table I, and Figs. 8, 9, and 10. The correlation

TABLE I. Fitted cumulative degree distribution parameters for
different sample sizes. Correlation coefficients show excellent
agreement between the theoretical distribution data and the pre-
sented fits.

Pcum�k−�e−
k Pcum�e−�k�

� 
 Corr � � Corr

m=10 0.5501 0.0765 0.9980 0.9829 0.4718 0.9976

m=100 0.4026 0.0092 0.9995 0.3894 0.4385 0.9987

m=1000 0.3067 0.0011 0.9994 0.2230 0.3823 0.9978
FIG. 6. �Color online� For m=100 it is easy to see that the

theoretical distribution follows simulation data very well, and FS
theoretical distribution even better.

FIG. 7. �Color online� m=1000 is the largest monitored sample
size but is still small enough compared to simulation number of
nodes nmax=106. Theory is in excellent agreement with simulation.
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coefficients of the fitted distributions are all above the 0.99
margin, proving that both fitting models are capable of de-
scribing theoretically obtained curves very well. The power
law with the exponential cutoff always has just a slightly
higher correlation coefficients than stretched exponential for
the same sample size m. The figures clearly show that the
power law with exponential cutoff describes the tail of the
simulated distribution very accurately. A stretched exponen-
tial is clearly not suitable for the description of the tail prop-
erties.

It is worth mentioning that the power-law distribution
with the exponential cutoff has already been obtained in a
similar model �15�, which has shown that exponential param-
eter 
 is trivially connected with the sample size m by the
relation 
=1/m. Although one cannot expect this relation to
be valid for this model also, the parameter 
 is very close to
1/m, and this coincidence is better for larger m, as can be
seen in Table I. In our opinion, it would be interesting to
measure 
 in some observed network distributions of a simi-
lar shape and compare it with the expected sizes of samples
on which the new node has the possibility of creating a link.

One of the most interesting features of the growth mecha-
nism introduced in this paper is the small value of the power-
law exponents � of the node degree probability distribution.
The values of these exponents, displayed in Table I, are
among the smallest obtained in the complex network models
so far. This fact further emphasizes the importance of our

model as a possible framework for the study of the power
laws with small exponents.

Finally, let us briefly discuss simulation results for ��1.
Simulation results for the cumulative probability distribution
�without P���� are displayed in Fig. 11. The typical charac-
teristics of the distribution are equivalent to the �=1 case.
The degree k=� has a substantially larger probability com-
pared to all other degrees. The cumulative probability distri-
bution for k�� obtained in the simulations displays the
scale-free-like properties. These simulation distributions can
be well fitted to the power law with the exponential cutoff
�18�, as shown in Fig. 11.

An important characteristic of the model is the temporal
correlation of the networks produced by the model of growth
studied in this paper. The investigation of this characteristic
shows that, similar to the BA model, there exists temporal
correlation. Therefore, additional modifications of the two-
step rule are needed to overcome this shortcoming.

In the study of the two-step process of the attachment of
new nodes to the existing network, the steps can be modified
in order to describe other types of the network growth. For
instance, in the first step it is possible to preferentially select
nodes into the sample and then randomly select � nodes
from the sample. Such a two-step attachment process results
in a power-law degree probability distribution with a number
of outliers with a high degree �24�. The other possibility is
the preferential selection in the first step and the preferential
selection in the second step. Such a model of network growth
results in a strong condensation of links at a very small num-
ber of nodes �24�. These models seem more realistic for cer-

FIG. 8. �Color online� Two different functions: �i� stretched ex-
ponential and �ii� power law with the cutoff are fitted on theoretical
data for sample size m=10. This figure clearly shows that the power
law with the exponential cutoff better describes the tail of the the-
oretical distribution.

FIG. 9. �Color online� Fitted curves for m=100. Power law with
the exponential cutoff represents the theoretical distribution very
well.

FIG. 10. �Color online� Excellent agreement of fitted and theo-
retical distributions for m=1000.

FIG. 11. �Color online� Evidence that the distributions for �
�1 fall in the same class as the distributions studied analytically.
The situation with m=100 is presented.
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tain types of network growth, such as, e.g., the network
growth based on the use of search engines.

V. CONCLUSIONS

We have shown that using a simple “winner takes it all”
algorithm, together with the fact that nodes do not possess
complete information on network structure, a macroscopic
node-degree power law is created. We have shown that real-
istic assumption of incomplete knowledge can have a sub-
stantial effect on the network growth. Although the field of
complex networks has made great progress during the last
few years, there is still much open space for research of
microscopic models that describe the formation of complex
networks with certain expected features. Our results clearly

show that stochastic-deterministic processes even as simple
as that described in this paper can be used to reproduce some
macroscopic effects of complex networks. Moreover, in this
paper as well as in �15�, we have demonstrated that the
power law with the exponential cutoff can be a significant
distribution for types of networks in which information fil-
tering is performed. Recent findings in social contact net-
works �22� lead us to believe that the power law with the
exponential cutoff and stretched exponentials should be stud-
ied more intensively in the future.
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